News

Keep up with the latest news from the NCI Center for Biomedical Informatics and Information Technology (CBIIT) and the data science communities.

Explore these two articles, both published by members of the NCI and Department of Energy Collaboration!

NCI’s Surveillance, Epidemiology, and End Results (SEER) Program is marking 50 years of cancer surveillance research and launching three new initiatives that are likely to be of particular interest to the data science field. These efforts include a Virtual Tissue Repository, a Virtual Pooled Registry, and a partnership with the Department of Energy to develop application programming interfaces.

Researchers create a theoretical model to enable simulations based on Dynamic Density Functional Theory. This new model can help them understand the behavior of cancer-causing proteins better.

NCI-funded researchers used a machine learning approach to identify patients who were most likely to benefit, or have adverse effects, from cancer treatment late in life.

NCI-funded researchers collaborated with scientists from NCI’s Division of Cancer Epidemiology and Genetics and Division of Cancer Prevention on a study using a deep learning model to prioritize screening for lung cancer.

The PLCO Atlas allows investigators to browse and access germline genetic association data from the PLCO Screening Study via the Genome-Wide Association Study Explorer.

Submit your expression of interest to transform cancer research with help from data science tools and methodologies. “Cancer Grand Challenges,” a global initiative founded by NCI and Cancer Research UK, announced new research challenges to address how we prevent, diagnose, and treat cancer.

An NCI-funded project wants to increase diagnostic accuracy, reduce missed cancer diagnoses, and improve public health by changing the design of artificial intelligence (AI) medical systems to work with radiologists.

Check out this updated Notice of Special Interest if you’re interested in supplemental funds for activities that will make NIH-supported data usable for artificial intelligence and machine learning analytics!

Discover how the algorithms produced in this challenge performed in detecting breast cancer.