Cancer Data Science Pulse

Artificial Intelligence

Meet the people who are breaking new ground in the data science field, whether it’s a new tool, a new model, or a completely new way of using data. Here, we’re featuring Svitlana Volkova, Ph.D., chief scientist at Pacific Northwest National Laboratory. She’ll describe how she’s using “foundation models” to give scientists and analysts a new tool for unleashing the power of artificial intelligence (AI).

Whether you are in the data science field, interested in developing computational solutions for clinical oncology, or a clinical researcher, we’ve curated a list of data sets, tools, and learning resources to showcase how these disciplines can and are working together to empower cancer research.

Data and Artificial Intelligence (AI) are a match seemingly made in heaven. By joining data and AI, scientists are able to shift a lot of the burden associated with using data from human to machine. See why the data-AI relationship works so well for cancer research in this offbeat blog featuring two fictitious characters—Datum and his pal Aida.

In this blog, Dr. Elana J. Fertig describes how she is using artificial intelligence, blended with spatial and single cell technologies, to better understand how cancer will respond to treatment. Predicting the changes that occur in the tumor during treatment may someday enable us to select therapies in advance, essentially stopping the disease in its tracks before it reaches the next stage in its evolution.

In this blog, University of Maryland's Mrs. Aya Abdelsalam Ismail examines the use of Deep Learning in medical applications, especially as a means for following a disease or disorder over time. She’ll describe how a “wrong turn” in her research on forecasting Alzheimer’s Disease led her to question her model’s performance. Her findings are particularly relevant for Deep Learning models in the cancer field, which use images obtained from patients, often at different points in time.

To commemorate the National Cancer Act’s 50th anniversary, we’ve pulled together Five Data Science Technologies poised to make a difference in how cancer is diagnosed, treated, and prevented.

On Wednesday, September 22, 2021, Yanjun Qi, Ph.D., from the University of Virginia, will present “AttentiveChrome: Deep Learning for Predicting Gene Expression from Histone Modifications,” in the kickoff of the Fall Data Science Seminar Series. This blog offers insight on Dr. Qi’s research and why this topic is important to her.

What do winter storms, airplanes, and cancer research have in common? In this blog, experts on meteorology, aerospace engineering, and radiation oncology explore what we can learn from these very different fields to further advance how we target and apply radiation to more effectively treat cancerous tumors.