Robust Cancer Mutation Detection with Deep Learning Models Using Tumor-Normal Sequencing Data
Accurate detection of somatic mutations is challenging but critical to understanding how cancer forms and progresses. Such detection is also critical for targeting more effective treatments. In this seminar, Dr. Mohammad Sahraeian, senior principal bioinformatics scientist at Roche Sequencing Solutions, gives an overview of NeuSomatic — the first deep convolutional neural network approach for detecting somatic mutations.
Dr. Sahraeian will demonstrate how NeuSomatic can outperform conventional detection approaches, both in typical and challenging situations, that involve low coverage, low mutation frequency, damaged DNA, and/or ambiguous genomic regions. He will explain how this network can be applied across multiple technologies and pipelines, including whole-genome sequencing, whole-exome sequencing, AmpliSeq target-sequencing, varying tumor/normal purities. Dr. Sahraeian will also discuss the benefits of different coverages, ranging from 10x to 2000x.
Dr. Sahraeian is a senior principal bioinformatics scientist specializing in genomic data analysis at Roche Sequencing Solutions. He is the coauthor of “Deep convolutional neural networks for accurate somatic mutation detection,” which was published in Nature Communications. Using this approach, his Roche team received best performer recognition in two categories in U.S. Food and Drug Administration’s Truth Challenge V2.
Upcoming Events
- Envisioning a Future Toward More Equitable Trials: Artificial Intelligence and Its Implications in Health EquitySeptember 09, 2024 - September 10, 2024Impact of the Molecular Characterization Initiative on Pediatric CNS TumorsSeptember 10, 2024AI and Global OncologySeptember 24, 2024NCI’s Clinical and Translational Data Commons: Your Resource for Cancer DiscoverySeptember 25, 2024NCI Office of Data Sharing’s Annual Data Sharing Symposium: Driving Cancer Advances Through Impactful ResearchOctober 16, 2024The Cancer Research Data Commons 2024 Fall Symposium: Ten Years of Empowering Cancer ResearchersOctober 16, 2024 - October 17, 2024